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ABSTRACT

Several Monte Carlo techniques are compared in the
transport of neutrons of different source energies through
two different deep-penetration problems each with two parts.
The first problem involves transmission through a 200-cm
concrete slab. The second problem is a 90° bent pipe
jacketed by concrete. In one case the pipe is void, and in
the other it 1s filled with 1liquid sodium.

Calculations are made with two different Los Alamos
Monte Carlo codes: the continunus-energy code MCNP and the
multigroup code MCMG. With MCNP, seve al techniques and
combinations are evaluated: analog Monte Carlo, geometry
splitting with Russian roulette, the exponential
trans{ormation, a weipht window (constraining the upper and
lower particle weights to be within certain limits), and
uring a combinatinn of random walk/deterministic schemes.
With MCMG, a comparison is made between continuous-energy and
multigroun Monte Carlo and also between different multigroup
scattering models (including the one used by the MORSE code).

Several unexpected resulte were found In the comparisons
of the various calculations. For example, compared to
continuous=chergy calculations, multigroup calculations with
standard cross-section weighting (for both Monte Cnrlo and
Sp) underpredict the neutron leakage transmitted through the
200=-cm concrete slab by a factor of four.

When considering different techniques for reducing the
product of varfance and computing time with regard to ease of
usr, reliability, and effectiveness, we find geonctric
uplitting with Russian roulette to br a superior technique.
The weight window, however, appears to b more effective than
orig!nally anticipated.
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INTRODUCTION

Several Monte Carlo techniques are compared in the transport of
neutrons of different source energies in two different deep-penetration
problems. The first protlem involves transmission through a 200-cm-thick
concrete siab. The second problem is a 90° bent pipe jacketed by
concrete. In one case the pipe is filled with liquid sodium, and in
another case it is void.

In actual shielding applications, one might need to account for photon
production and transport, streaming paths, the exact compositions of the
shielding material including rebar, and other Ffactors depending on the
problem. For example, for 14-MeV neutrons incident on 200 cm of concrete,
Oak Ridge concrete reduces the transmitted dose by a factor of ten better
than does Los Alamos concrete. All the above considerations, however, are
beyond the scope of this paper.

Rather than addressing particular and detailed shielding problems, the
purpnse of this paper is to apply different Monte Carlo techniques to
problems of general interest to the shi:lding community and to compare the
merits of the techniques. The problems considered here have nontrivial
attenuations, and an attempt has been mede to select representative
features of real shielding problems without incorporating arbitrary or
extraneous detail. In addition to & comparison of method:, results such &s
leakage, flux, and dose rate are presented, and we believe these results to
be reliable. Doses throughout this paper refer to biological dose and were
obtained with the ANSI! flux-to-dose conversion factors. By providing
these benchmark-type results, others may wish to compare results from the
same problems using different calculational tools. Interesting comparisons
cnuld be then made in terms of accuracy and efficiency between MCNP and
other Monte Carlo codes (such as MORSE, TRIPOLI, or SAM=-CE) and other
calculational techniques such as S, or hand calculations using buildup
factors.

Basically, several techniques such as the exponential transformation
and geometrical splitting with Russian roulette will be compared using the
continuous=-energy code MCNP2 with virtually no approximations, MCNP with a
pseudo-multigroup set of cross sections, and a true multigroup version of
MCNP called MCMG.3 All calculations done with MCMG are with 30 neutron
energy groups. MCMG has the option to represent the distribution of
scattering angles for group-to-group transfers by equiprobable .osine bins
or by MORSE-type discrete scattercing angles.“ The pseudo-multigroup
crogs-gection set in which the reaction cross sections have been collapsed
into 240 energy groups for use with MCNP 18 referred to as the
discrete-reaction data (DRXS). More details can be obtained about MCNP and
MCMG i{n another paper by Thompson and Cashwell given at this geminar.

The amount of computer memory required for cross-section data for the
ten constituents of ordinary Portland concrete is given in Table 1 as &
function of calculational method, dats set, and energy range.



About six hours of CDC-7600 computer time were used for the
calculations reported in this paper. The multigroup calculations were done
by Deutsch, Booth did the calculations with the exponcntial transformation
and the weight window, and the rest of the caiculations were done by
Thompson.

Table 1. Neutrou Crcgs-Section Storage
for Portland Concrete

Mode Wordsjg
MCNP, ENDF/B-V 297462

20 MeV < E < 0.00912 MeV

MCNP, ENDF/B-IV 133091
20 MeV < E < 0.00912 feV

MCNF', DRXS (ENDF/B-IV) 42952
20 MeV < E < 9.00912 MeV

MCMG, 30 jroup 23000
20 MeV < E € 10~% ev

MCNP, ENDF/B-V 310621
20 MeV < E < 10~5 ev

MCNP, ENDF/B-IV 139316
20 MeV ¢ E < 1077 eV

MCNP, DRXS (ENDF/B-1IV) 45852
20 MoV ¢ E € 107 eV

MCNP, ENDF/B-V 56161
1864 keV < E < 8.32 eV

All calculations for this paper were done with ordinary Portland
concrete as found in Schaeffer's book.? One calculation (the pencil-beam
fission spectrum incident on a 100~cm~radius, 200-cm-thick concrete disk)
was also done with the 04 concrete from the ANSI standard.® The
compositions of these two concretes are listed in Table 2. The transmitted
dose through the 04 concrete is 4.7 times higher than through the ordinary
Portland concrete, while the transmitted leakayge and flux are sach about
5.2 timcs higher (these -esults are within 5%). All following reported
results will be with ordinary Portland concrete.



Table 2. Concrete Compositions

J4 Portland
Element wt.2 wt.2
H 0.56 1.00
n 49.81 52.9
Si 31.51 33.7
Ca 8.29 4.4
C - 0.1
Na 1.71 1.6
Mg 0.26 0.2
Al 4.57 3.4
S 0.13 -
K 1.92 1.3
Fe 1.24 1.4

p=2.339 g/cc  p=2.30 g/cc

All continuous-energy calculations were done with ENDF/B-V cross
sections. However, the first problem that will be discussed, the
pencil-beam fission spectrum incident on 100-cm-radius by 200=-cm-thick
cuncrete, wasalgso done with ENDF/B-IV cross sections. There were no
perceivable differences in any of the results. The Monte Carlo multigroup
calculations were done with ENDF-IV cross sections. If calculations had
been made invo’ving heating or photon production, this conclusion of
equality between IV and V may not have been true. Again, it 1is not the
purpose of this pager to compare cross sectiong; t:is has been extensively
done at Los Alamos’»B and elsewhere by others.

With regard to the use >f different Monte Carlo techniques on a
variaty of applications, there are no universally valid prescriptions. The
only truly effective rule of thumb is to alwsys make two or three short,
experimental runs (say of half a minute each) to help discover the
characteristics of the particular problem and the effect of varying a
parameter or two in a particular variance-reduction technique. There {8 ro
substitute for practical experience to guide the approach tc a pecrticular
problem. What works in one situation in no way guarantees success in
another situation and may even be harmful. A good Monte Carlo code should
provide a variety of standard summary and diagnostic {nformation tu help
understand what is happening in a given problem. In doing the calculations
for this paper, we encountered some surprises to our intuition. However,
short, preliminary ruus provided the necessary insight for the final runs.

Finally, before getting down to business, comparisons between the
various techniques will be done on the bamis of a relative figure of merit,
FOM = 1/(ozt) where 0 is the standard error associated with a result of the



calculation and t 1s the computer time required. For example, if it took
30 minutes to get a 4% error, 20.8 is the figure of merit. HNote that to
compare your FOM to the ones reported in this paper, you will also need to
factor in the speed of your computer system relative to ours. All
calculations reported by us were done on a CDC~7600 computer. All reported
errors represent one standard deviatlion. Note that there is also an error
assoclated with the figure of merit, a variance of the variance. In the
following calculutions, we attach no significance to smali differences in
the FOM such as between 62 and 55.

The factor o2t is directly related to the dollar cost of running a
job. It is important to note that the cost depends both on 02 and t; for
example, you may reduce c? but only at a greater expense in t or vice
versa; the product of the two must be reduced to be beneficial. Not
explicit in this relation for the total cost of a job is the cost in human
time to set a job up and the cost of the preliminary experimental runs to
set the parameters. If ycu spend three days with ar elaborate setup and
five hours of computer time refining and optimizing the parameters in the
best possible way so that your job runs in 10 minutes rather than 20, you
have lost. In all the following calculations, we usually made two or three
preliminary runs for about a half minute each. We make no claim that our
setups and figures of merit are the bes:, but they are accepcable as being
cost~effective. Undoubtedly, someone can make improvements but probably
not without diminishing returns.

VARTANCE-REDUCTION TECHNIQUES

The successful application of the Monte Carlo method to any deep~-
penetration problem generally requires the use of one or more
variance-reduction techniques. 1In general, one can expect that some
techniques or combinations of techniques will be more effective than others
in terms of range of applicability, ease of use, reliability, and
performance. We measure performance in terms of the figure of merit
1/(czt). By reliability, we refer to the possibility of injudiczious
selection of the parameters of a technique resulting in erroneous answers
because an important part of phase space may not have been sampled
adequately, 1if at all. Finally, ease of use refers to the degree of
difficulty in determining the parameters of a *echnique and to the
sensitivity of performance to precise selection of the optimal parameters.

Based on many years of experience and observations of users at Los
Alamos, the most frequently-used techniques at Los Alamos are geometry
splitting with Russian roulette, directional source biasing, survival
biasing, and a weight-cutoff game incorporating Ruasian roulette. These
techniques are frequently used in combination. It is assumed that 1if
nenrgy and/or time cutoffs are appropriate for a problem, then they have
been used also. The exponential transformation is infrequently used, and
in fact, we have discouraged its use. We note all too frequently that the
lesy experience a user has, the more any of the variance reduction



techniques are abused by using the techniques inappropriately, or with
several techniques in conjunctionleading to conflicts, or most commonly by
biasing too heavily. Any of these problems can result in a wrong answer.
It cannot be overemphasized that any variance-reduction technique must be
used with caution and understanding.

In the following calculations, several different techniques are tried
and compared. For all problems, we compare geometry splitting with Russi_.n
roulette, the exponential transformation, a weight window, and DXTRAN. The
effect of running the problems in a purely analog fashion will also be
illustrated. Other techniques will also be tried but not for all cases. A
short description will be given for the main techniques used in these
calculatione.

A more detailed description can be found in Ref. 2.

Geometry Splitting with Russian Roulette

MCNP does not split particle tracks upon collision but as a function
of spatial location. The geometry is subdivided into several cells, and
each cell is assigned an importance. When a track of weight W passes from
a cell of importance I to a cell of higher importance I', the track is
split into I'/I tracks, each of weight WI/I'. (Non-integer splitting is
allowed, but we will consider only integral importance ratios for
simplicity.) 1If a track passes from a cell of importance I' to a cell of
lower importance I, Russian roulette is played; a track survives with
frequency I/I' and is assigned a new weight of WI'/1 1{f it survives.
Generally, the source cell has importance of unity, and the importances
increase in the direction of the tally. The importances are chosen to keep
the track population roughly constant between the source and the tally,.

Weight Cutoff with Russian Roulette

The weight cutoff is made relative to the ratio of the importance of
the source ce=ll to the imprortance of the cell where weight-cutoff is about
to take place. This keeps the geometry-splitting and weight-cutoff games
from interfering. If a track's weight falls below quantity WC2 (usually
from survival biasiag), Russian roulette is played. A track survives with
frequency WCZ2/WC1l and is assigned the weight WC1 if it asurvives. WCl and
WC2 are generally chosen to be 0.5 and 0.25, respect!vely, for a starting
weigi,t of unity but are problem~dependent.

Exponential Transfnrmation

This technique ailows a track to move in a preferred direction by
artificially reducing the macroscopic total cross section in the prefer:ed
direction and increasing tne c.oss section in the opprsite direction
according to

r'ex - zt(l = P‘J) ’ ()



where
Lex ™ transformed total cross section,
L, = true total cross section,
P = parameter used to vary degree,
of biasing, 0 < p < 1, and
Hu = cosine of angle between preferred
direction and track's velocity.

Upon collision, the track weight is multiplied by
v = e PL VS

¢c l-pu °

where 8 18 the distance to collision. Note this can lead to a dispersion

of weight, and that it is possible for some weights to become very large if
the tracks are traveling opposite to the preferred direction.

We have found the exponential transformation by itself to be of
limited use. The dispersion of welights that it creates can result in an
unreliable sample mean while the sample variance may erroneously indicate
an acceptable precision. Furthermore, it 1is not clear how to choose the
biasing parameter p, but we note that it is generally chosen too high -
especially by novice users. For the calculations of this paper, the
parameter was selected by observing the sample variance as a function of
the parameter on a few short runs.

When combined with a weight window to place a bound on the upper and
lower waights of tracks, we have found that th2 exponential transformation
can be useful. However, choosing parameters for the weight window can
further complicate the problem setup, especially for the inexperienced
user.

Weight Window

A wveight window consists of an upper and a lower bound for a
particle's weight. If the track weight is less than the lower weight
bound, Russian roulette is played and the we. ht is increased to lie innide
the window or the track is killed. If the track weight is above the upper
bound then the track is split so that the resulting tracks have thelr
weights within the vindow. The bounds of the window can be set as a
function of energy and spatial position.

This weight-window capability is presently not a permanent feature of
MCNP. It 18 available as a modification and is under evaluation by Group
X=6. Among other things, we are trying to learn how to use {t. It
appears that this technique has merit not or.ly when used with the
exponential transformatinn but in conjunct on with other techniques. The
bane of any variance-reduction technique is creating a 4ispersion of
wveights and especially creating a few tracks with very large weights. The
weight w!ndov vppears to reduce these problems effectively.



DXTRAN

In a geometry region which is difficult to sample adequately, the
DXTRAN scheme of MCNP can be of value. At each collision, contributions of
scattered particles are deterministically transported to a spherical
neighborho 'd of interest. These contributions, or pseudo-particles, are
placed on a sphere surrounding the neighborhood of interest and then
transported in the ordinary random-walk manner. The pareat particle giving
rise to the pseudo-particle at a collision continues its random walk, but
it 1s killed 1f it tries to enter the neighborhood during its random walk.

There are actually two DXTRAN spheres. The pseudo-particles are
placed on an outer sphere. An inner sphere concentric to the outer one is
used to bias the placement of pseudo-particles within the cone defined by
the inner sphere and the point of coilision.

DXTRAN has certain features in common with a point detector. It also
has the disadvantages of a detector: it can significantly increase
computation time, and it 1is susceptible to large-weighted contributions.
For these and other reasons, success is not guaranteed when using DXTRAN,
and it (like a detector) should be used selectively and carefully.

A useful feature of MCNP is the DD input card. This provides
diagnostics pertaining to DXTRAN or point detectors such as the
accumulative fraction of the number of contributions, the fractional
contribution, and the accumulative fraction of the total contribution - all
as a function of mean free path away from the DXTRAN sphere or detector.
Having this information from a short run, Russiar roulette can be plaved on
contributions a selected number of mean free paths away. This can save
substantial computer time.

Angle Biasing

Angle bilasing for the problems of this paper was not applied for two
reasons: (1) our experience with angle-biasing techniques is both limited
and discouraging, and (2) angle blasing 1s not a standard MCNP option. We
have experience with sampling two different (fictitious) exit densities,
namely

p1(Q) = l—%ghx = probability of sampling a unit solid (3)
angle about u,v,w Tbl <1
and bebv

pa(R) = T———-S?l'ﬁ' = probability of sampling a unit solid (4)
e - angle about u,v,w b >~ 0.

Both of these schemes seem to introduce a large variation in particle
weights which is reflected in a poor variance of the sample mean. Use of
weight window improves the variance, but only to the point where the
variance matches that of the w:ight window alomne.



It is entirely possible that other angle-biasing schemes may perform
much better. In particular, angle-blasing schemes in discrete-angle Monte
Carlo ccdes (such as TRIPOLI) can be easily fabricated to avoid large
varfations in particle weights. This does not appear to be the case in
continuous—-angle Monte Carlo codes (such as MCNP).

CONCRETE-SLAB PROBLEMS

A major advantage of Monte Carlo is the ability to calculate with no
compromise in gecmetrical reality. Since the purpose of this paper is to
illustrate some variance-reduction techniques, this advantage plays no role
in this particular problem. S, is more appropriate for this problem - but
at the pcssible expense of getting the wrong answer because of the
multigroup approximation (as will be seen later in this paper).

This problem consists of two parts. Both parts consist of a 200-cm-
long homogeneous cylinder of ordinary Portland concrete with a pencil-beam
source of fission-spectrum neutrons incident along the axis. In one case
the radius of the cylinder is 100 cm, and in the other the radius of the
cylinder is 20 em. The object is to tally the net neutron leakage (or
current) acrcses the face opposite the source for comparison or all the
methods. However, the transmitted flux and biological dose were also
calculated by MCNP. The geometry of both cases is illustrated in Fig. 1.
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Figure 1. Concrete Slab Problems.

The source energy spectrum is defined according to the Maxwellian
representation of the fission spectrum:

2 JE -E/T
f(E) - — e » (5)
N

where we have chosen the parameter T = 1.30 MeV that produces an average
source energy of 1.95 MeV. A prescription that was used to sample from



this spectrum for MUNP is in the Appendix. For the multigroup calculations
with MCMG, the spectrum was analytically integreted to determine the group

gources:
E ¥
‘ -E .. , -E _/
£(E) dv.i[_Ef_leEF*‘/T_ _E.E ST]
13 N T €
S
Egn

- A 4]

The group sources are listed in the Appendix.

(6)

A short adjoint run with MCMG plus an S, calculation indicated that
gource particles below 3.68 MeV (this corresponds to one of the multigroup
boundaries) made few tally cortributions. More precisely, about 10X of the
transmitted leakage results from source neutrons below 3.68 MeV.

Therefore, the source spectrum was sampled for energies only above 3.68
MeV. Thes: high-energy-source particles account for 12.9292 of the total
source particles in the unaltered spectrum. Therefore, all results were
multiplied by 0.12929 to normalize to one total source neutron. By biasing
the source in this manner, the figure of merit for MCNP calculations
increased by a factor of two.

For the 3.68-MeV truncated fission specirum, 200 cm of concrete 1is
about 25 mean free paths thick; for the full, unaltered spectrum, the 200-
cm—slab is about 28 mean free paths. In the first 10 cm, the average mean
free path is about 6 cm. After only a few more centimeters into the
concrete though, the average mean free path becomes about 4.5 cm and
remains very close to this throughout the 200-cmz thickness. The energy
cutoff for the caiculations was set at 0.00912 MeV (again this corresponds
to one of the group boundaries) because only a couple of percent of the
transmitted neutron dose comes from transmitted neutrons with an energy
less than this. Using this cu-off increases the figure of merit by a
factor of about three. There are 18 groups in the multigroup data above
0.00912 MeV. Furthermore, thkis energy cutoff requires a smaller
computer-memory requirement.

To illustrate the effect of the above energy cutoffs and photon
production and that the simplification for this academic paper may not be
valid for actual shielding problems, MCNP was used for a 10-minute
calculation with none of the abtove cutoffs and also accounted for photon
production for a 100-:m radius by oniy a 100-cm-thick concrete slab. The
figure of merit for the total neutron dose is 8.6 using splitting, and the
total neutron dose is 8.1 x 10”13 % 8.5% mrem/source neutron. The dose
from transmitted neutrons above 0.01 MeV is 7.5 x 10'13,and the total
photon decse is 1.7 x 10~13 £ 8.5% mrem per source neutron.About 49% of the
photons were started in the energy range 2-5 MeV, 2.7 MeV of photon energy
were started on the average per neutron, and the average waight of photons
started was 0.87 per neutron. Another run vas made buvt with the neutron
energy cutoff at 0.0l MeV. The figure of merit increased to about 56, the
total neutron dose became 7.2 x 1013 % 6%, and the photon dose dropped to
2.6 x 10~15 ¢ 18%. Now about 14X of the photons start between 2 and 5 MeV,



0.24 MeV of photon energy were started per neutron, 4. the average weight
of photons started was 0.14 per neutron. For l4~MeV reutrons incident on
100 em of concrete and using no cutoffs or approximations, about 8% of the
total dose comes from photons.

100-cm—Radius Problem

With the pencil-beam source, the axially penetrating leakage 1s
8.2 x 1079 £ 4.4%, the transverse leakage is 1.9 x 16™>, and the
backscatter leakage 1s about 35%. Because of the negligible transverse
leakage, the problem geometry 1s equivalent tc a homogeneous, semi-infinite
slab. About 9.52 of the neutron weight is lost to capture.

In a purely analog case (no splitting, survival biasing, or anythirg
else), except for source energies greater than 3.68 MeV, 21484 source
neutrons were started in two minutes of computer time. At 50 cm there were
5409 (25%) neutrons, 83 were at 100 cm, and none were at 150 er. This 1is a
very clear example of why varlance-reduction techniques are necessary.

Adding survival blasing and weight cutoff with WCl = 0.5 and
WC2 = 0.25 to the above example, a slight Improvement {s noticed jn the
same two minutes of time: 19336 source particles were reduced to 5477
(287) at 50 cm, to 102 at 100 cm, and to none at 150 em. Only three tracks
were lost to the Russian roulette part of the weight cutoff game. With WC1l
and WC2 increased to 1.0 and 0.5 respectively, 19432 source particles were
reduced to 5461 (28%) at 50 cm, to 106 at 100 cm, and to none at 180 cm.
Only 121 tracks weire lost to Russian roulette. In this problem survival
biasing and welp't cutoff help a little but not a significant amount. It
is a generally accepted practice, however, to use these two tecuniques
routinely (naturally there are exceptions).

To add geometry splitting with Ruesian roulette, the concrete cylinder
was subdivided axially into cells 10-cm~thick by adding planes splitting
surfaces; 10 cm was chosen because It is a convenient numbter and because it
allows a couple of mean free paths between splitting surfaces (based on an
average of 4.5 ciom for a mean free path averaged over collisions). Cell
thicknesses of 15 cm worked equally well. The problem was run for half a
rinute with the importances of all cells set to unity. Part of the
standard summary output of MCNP is the track population in each cell, and
wherever the population dropped by a factor of two, the importance of that
cell was doubled relative to the adjacent cell in the direction of the
source. In some places the two-for-one splitting was not enough, so
four-for-one splitting was occasionally used. If an incremental cell
thickness less than 10 cm ha. been chosen, two~for-one splitting could have
been used throughout. Conversely, greater than 10-cm increments would have
led to a more consistent use of four-for-one splitting. A goal 1s to try
to keep the population roughly constant, say within 50%.

For this particular problem, there appears to be little difference in
computer efficiency between two-for-one and four-~for-one splitting. Other
ratios can also be used as necessary. Two-—for-one splitting makes it



easier to level the population, but it requires the user to add more cells
and surfaces to the problem setup. Four-for-one splitting requires less
input from the user and less arithmetic for the computer, but it is harder
to level out the population. Going beyond four-for-one splitting
introduces greater risk because that implies a fairly large reduction in
the population before it is built back up. The darger is that once a
sample population deteriorates to s small size, source information
associated with the sample can be lost. Once information is lost, it can
never be regained. For example, in the analog problem mentioned earlier,
at 170 cm we could have introduced the first splittiig surface and split
21484-for-one. The track population would be back to its original size,
byt then the true energy spectrum would be represented by one discrete
energy. The old saying about squeezing blood out of a turnip 1s very
appropriate here.

Three iterations of half a minute each were used to set the
importances. The ratio of importances between cells, the actual importance
assigned to a cell, and the2 track population in each cell are shown in
Table 3 for 91440 source reutrons. In this final run, weight cutoff was
played with WCl = 0.5 and WC2 = 0.25 (both times the starting welght of the
neutrons), resulting in 4233 tracks lost to Russian roulette. 1In the
splitting game, 1118990 tracks were crected, but 460729 were lost to
Russian roulette. Note that in cell 18 the population is too high.

Table 3. Splitting in the 100-cm~Radius by
200-cm~Thick Concrete Problem

Importance Track
Cell Ratio Importance Population

(Soutce) 1 1 1 94215
2 1 1 69498

3 2 2 86168

4 2 4 86972

5 2 8 B244]

6 2 16 78332

7 4 64 140593

8 2 128 118175

9 2 256 101254
10 2 512 86628
11 2 1024 75750
12 4 4096 127292
13 2 8192 102290
14 2 16384 89315
15 4 65536 151848
16 2 131072 123118
17 2 262144 107322
18 4 1048576 180848
19 ? 2097152 142741
(Tally) 20 2 4194304 100576




For this problem the transmitted leakcge is 8.2]1 x 1079 + 4.4% for
neutror. leakage, the transmitted dose is 1.22 x 10-17 % 4.5% mrem per
source neutron, the transmitted flux is 4.10 x 10~13 £ 4.3% neutrons/cmz,
the leakage :scaping through the curved cylindrical surface is 1.91 x 1073
t 16X neutrons, the backscattered lealage 1s 4.51 x 102 ¢ 0.4%, and 6.7 is
the figure of merit.

Other splitting gamee can also be played. The most obvious 1s a
combination of axlal and radial splitting. With radial splitting, one
could set up a cone as a splitting surface with i{ts vertex at the sourca
point and then intersecting the edge of the exit face. Secondly, rather
than a cone, a concentric cylinder could be used with its radius half that
of the outer cylinder. It turns out that neither of these approaches
regults in much {if any) gain in this problem. What emall amount is gained
in reducing 02 i{s lost by an increase in t because of the added arithmetic
for the computer.

There is a frequently-heard rule of thumb for geometry splitting that
says split two~for-onc every mean free path, but you do not hear if this
means a mean free path based on source energy or average energy of the
particles in the geometry. In this protlem, a mean free path based on a
source energy is about 8 cm and about 4.5 cm averaged over collisions.
Splitting =wo-for-one every 4.5 cm in only a 100-cm=thick slab of concrete,
1 source neutron had been split into a population of 440 at 50 em and 12740
at 100 cm and required 0.96 minutes of computer time. Splitting two-for-
one every 8 cm in a similar 100~cm-thick slab of concrete was better; 335
source neutrons required 0.52 minutes of computer time and were split into
a population of 1597 at 50 cm and 1904 at 75 e¢m. Obviously, this rule of
thumd applied by either method leads to oversplitting.

Using the weight window with only survival biasing and nothing els-.
the transmitted leakage is 8.26 x 10~7 ¥ 9,3% with 6.3 for a figure of,
werit. The lower weight bound in the source cell was chosen to be SO0X%
lower than the particles' source weight. The lower weight bound for the
rest of the cells was chosen to be a factor @ less than the previous cell's
lower weight bound where v for cell 1 was chosen as

(starting weight)ul = transmission obtained (7)
by previvus short run.

The upper weight bound was chosen to be five times the lower weight bound.

Using the exponential transform with survival b!asing, no weight-
cutoff game, and a transform-biasing parameter of 0.7, only a very short
run was required to see a poor performance. The figurc of merit was 1.5,
and the transmitted lcakage was 4.86 x 108 + 39% which 1 too high by «
factor of six - in other words, completely unreliable.

Adding to the c.ponential transformation a weight-cutoff game (but nct
the weight window) that is dependent on cell importances had the result
taat after 4.6 minutes of computer time the transmitted leakage was



5.22 x 1079 £ 19.2% with a figure of merit of 4.2; after 10 minutes,

8.22 x 1079 ¢ 26.7%; and after 17.6 minutes the leakage was B8.06 x 10~9

T 18.4 with 1.7 as the figure of merit. This example demonstrates the
value in wacching the behavior of a sample mear and its variance during the
progress of a calculation. If either is unstable, the sample mean is
unrelisble. By not watching this behavior, a result (such as the leakage
of 5.22 x 10'9) may be incorrectly accepted as satisfac:ory based on an
apparently low variance.

Applying the weight window and exponential transformation together
produced the best of all results with a figure of merit of 22.6 and a
transmitted leakage of 3.49 x 109 % 3.0%.

The multigroup code MCMG using 30 groups and geometry splitting
determined in the same manner as for MCNP was used on this problem. The
figure of merit wes 11.9, but the transmitted leakage was 2.17 x 10-9 +
5.6% which 1s low by a factor of four. Both the continuous-scattering
angle and MORSE discrete-scattering angle treatments were used. No
difference between the two was observed. For optically thin transmissions,
however, the continuous treatment is superior.

MCNP itself can be used In a pseudo~multigroup fashion by using our
discrete reaction cross-section set DRXS. These cross sections are
equivalent to the regular continuous-energy cross sections used by MCNP
except that the reaction cross sections have been collapsed into 240
enargy groups. Using MCNP and these discrete croas sections along with
geometry splitting on this problem, the transmitted leakage 1is 5.08 x 10~9
T 6.8% with 8.0 for the figure of merit.

All of these results are summarized in Table 4.

To our surpriee, the performance of the weight window may be
relatively insensitive to the size of the window. This problem was tried
with the ratio of the upper to lower bound set at 400 to compare with the
ratio of 5 used throughout this paper. 7The factor of 400 1s consistent
with a similar scheme used 1. MORSE. The results were virtually unchanged;
the figure of merit wss 19.5 and the leakage was 7.89 x 109 £ 10.6%. This
implies that it is a very few t:acks with very large weights thet cause
tallying problems. The provlems caused by a weight dispersion have long
been recognized, but the true nature of the dispersion may not have been
fully appreciated.

The dramatic improvement in the performance of the exponential
tranaform when it {s used in conjunction with splitting at an upper weight
limit seems to indicate that a substantial fraction of the tally variance
is associated with very high-weight particles. Particles can accumulat- a
high weight by traveling against the transform vector for part of thel»
trajectory. With eplitting at the upper weight limit. the distributio of
tally scores per source particle for each high-weight particle {s shiftied
from a binary distribution of scoring or not scoring in one lump to s
guperposition of binary distributions with smaller components. The net



recult is to reduce the variance while leaving the tally mean unchanged.
The computational time involved is relatively small because the high-weight
particles are relatively infrequent, and so a net gain is achieved in the
figure of merit.

The biggest surprise we had in doing the calculations for this paper
was the disagreement between the continuous-energy and multigroup results.
We see from Table 4 that the MCMG multigroup results underpredict the
continuous-energy results by a factor of almost 4. The group cross
sections coneist of 30 neutron groups from the ENDF/B-IV evaluation with a
weighting spectrum which 1s a fission spectrum matching a 1/E spectrum for
the energy range of interest.? 1In Table 5 we compare the partial leakage
J* in the direction of penetration at 15-cm intervals through the concrete
for continuous-energy and multigroup=-collision trcatments. It can be seen
that the discrepancy appears to grow systematically. The column labeled
"DRXS" is a calculation with the 240-group discrete-reaction cross sections
using MCNP. The results of the DRXS calculations fall in between the
continuous-energy and the 30-group MCMG results. One may conclude that an
energy self-shielding effect introduces a discrepancy into the multigroup
results and that the magnitude of th« discrepancy may be quite significant
for deep-penetration applications using standard cross-section sets.
Although this effect hus been reported in transport through pure materials
(most notably in thick iron shields), it might not be expected in mixtures
such as concrete with significant masking of cross-section windows and the
presence of hydrogen to lessen the importance of windows.

Table 4. Summary of Resulta for 100-cm-Radius
by 200-cm=-Thick Concrete Cylinder

Transmi{tted Computer

Method Leakage X Error TOM Minutes
MCNP, splitting 8.21 x 10~9 4.4 6.7 77
MCNP, weight 8.26 x 10~9 9.3 6.3 18.4
window
MCNP, exponential 4.86 x 1078 39 1.5 4.h
transformation
MCNP, exponential 8.06 x 10-9 18 1.7 17.6
transformation and
weight cutoff
MCNP, exponential 8.49 x 10~9 3.0 22.6 49.2
transformation and
weight window
MCMG, eplitting 2.17 x 10-9 5.6 11.9 26.8
MCNP, discrete 5.08 x 10-9 6.8 8.0 27.0

reactions, splitting

— i —




Given the discrepancy between continuous-energy and multigroup Monte
Carlo, an obvious question becomes what is the result of an S5,
calculation. Therefore, we made an S, calculation with the one-dimensional
S, code ONETRAN.10 The geometry was assumed to be a 200-cm Portland
concrete slab of infinite lateral extent. An infinite extent 1s a very
good approximation since the Monte Carlo calculations indicated the
transverse leakage to be about 2 x 1073, Using the truncated fission
spectrum (i.e., source energie- greater than 3.68 MeV) and the same 30
group ENDF/B-IV cross-section set as used with MCMG, good convergence was
achlieved with ONETRAN usins Lr of 1.66 cm and an S-8 Lobatto quadrature;
the leakage was 2.45 x 1077, Using the full fission spectrum source, the
leakage was 2.71 x 10~9. Good convergence with a Gauss quadrature was not
achieved until an S-16 or greater quadrature was used. There are _a couple
of conclusions: (1) S, agrees with the MCMG result of 2.17 x 10-9 % 5.6%
within two standard deviations, and (2) S, requires a Lobatto or high-order
Gauss quadrature for good convergence in deep-penetration problems.

To verify that the transverse leakage was truly negligible and that
the one-dimensional S, and MCMG results were comparable, an MCMG
calculation was performed with infinite radial extent for the 200-cm-long
concrete cylinder. The results were essentjally identical to those with
the 100-cm radius.

To further complete the picture (but not belabor the point), ONETRAN
was also used with a 30-group ENDF/B-V multigroup cross-section set. The
transmitted leakage was virtually identical with the ENDF/B-IV results from
ONETRAN and MCMG. Finally, MCNP calculations were made with modified
240-group discrete~reaction cross sections based on ENDF/B-V. The cross
sections for both silicon and oxygen were mcdified to accurately represent
the large window in the total cross section for each nuclide, at 0.145 MeV
for ailicon and 2.35 MeV for oxygen. The result was the same as with the
regular discrete cross sections in which the windows are averaged out.
This indicates the difference between continuous energy and multigroup
treatments is due to a self-shielding effect.

Another potential method to improve the results at the exit surface {s
to surround the surface with a DXTRAN sphere. DXTRAN, however, is
generally only useful in situations where it is difficult to get tracks by
a random walk to a particular place in the geometry in order to make a
tally. This is not the case here since by geometric splitting an abundance
of tracks gets to the surface tallies. In this case DXTRAN makes the
problem more inefficient by adding additional arithmetic complexity for the
computer to handle. However, if one is interested in calculating the flux
at a point in the center of the exit surface, relatively few tracks are in
the vicinity of any given point on the surface. A surface tally therefore
is useless, and a point detector is required. Ilacing a DXTRAN sphere
around a detector can ilmprove the efficiency of a detector ralculation
significantly.



Table 5. Comparison of Partial Leakage
as a Function of Method and Thicknessg

MCNP MCNP

Surface _ JYMCNP JYDRXS JMCMG DRXS MCMG

15 em 7 J44E=-2 7.38E-2 7.35E=-2 1.01 .01
(.68%) (.62%) (.46%)
(6.62) (i.0%) (.747%)

45 8.07E-3 7.65E=3 7.00E-3 1.05 1.15
(1.5%) (1.42) (1.0%)

60 2.26E-3 2.14E-3 1.79€=-3 1.06 1.26
(1.9%) (1.8%) (1.3%)

75 601‘.5-4 5!69E-4 4.40E"4 1-08 1040
(2.42) (2.2%2) (1.7%)

90 1.61E-4 1.48E=-4 1.06E-4 1.09 1.52
(2.92) (2.7%) (2.1%)

10Z 4.25E-5 3.81E-5 2.55E-5 1.12 1.67
(3.5%) 3.22) (2.5%)

120 1-145-5 9-62E-6 5-89E"6 1-19 1-9‘0
(4.12) (3.7%) (3.0%)

135 3.09E-6 2.41E-6 1.40E=-6 1.28 2.21
(4e7%) (4.4%) (5.42)

150 7-99E-7 6-18E-7 3-31!‘7 1-29 2041
(5.3%) (5.0 (3.9%)

165 2.13E-7 1.59E=-7 7.77E-8 1.34 2.74
(6.02) (5.7%) (4.42)

180 5.63E-8 3.91E-8 1.81E-8 1.44 3.11
(6.82) (6.1%) (4.92)

200 8.20E-9 5.08E-9 2.17E~9 1.61 3.78
(7.92) (6.82) (5.6%)

20-cm=-Radius Problem

This problem is identical to the 100-cm=-radius problem in every aspect
axcept for the radius. The smaller radius now makes the transverse and
backscattered leakages almost identical, 3.84 x 10"2 * 0.4%. This problem



runs only slightly less efficiently than the 100-cm-radius problem. The
reason is that although it is harder to get particles through the cylinder,
less time is spent on particles wandering around radially. They are killed
by escaping.

This problem was done in only two modes: splitting with MCNP and MCNP
with a combination of the weight window and exponential transformation.
The exponential transformation by itself on this problem performs very
poorly. The importances for splitting were set using the same technique as
before, and another (but different) combination of two-for-one and
four-for-one splitting resulted. The importarice in the last cell was
21233664 as compared to 4194304 for the 100-cm-radius problem. For the
case of splitting, the transmitted leakage is 7.50 x 10710 + 5% with 6.0 as
a figure of merit. The weight window and transformation (biasing parameter
is again 0.7) result is 8.17 x 10710 + 4.9% with 21.5 as a figure of merit.

From the calculation with splitting, the transmitted neutron dose is
2.74 x 10717 £ 7.02 mrem/per neutron, and the transmitted flux is
8.06 x 10713 £ 6.92 neutron/cu?.

DXTRAN is also inappropriate for this casvu as °~ was for the 100-cm-
radius case; the figure of merit is reduced by its _..

BENT-PIPE PRCRLEM

Thies problem is also divided into two parts, both of which are much
lJess demanding than the previous 200-cm-concrete problem. In both cases a
20-co-radius pipe that is 240-cm long along the axis has a 90° bend in the
center and 1s jacketed concentrically by a 20--em=thick region of ordinary
Portland concrete. In the first case, the pipe is filled with liquid
sodium, and in the second case the pipe is void. The geometry is shown in
Figure 2. With the sodium, the attenuation from one end to the other is
about 106 and with the void about 103,
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Figure 2. Bent Pipe Jacketed by Concrete.



The source for both cases is the game. 1t 1s an area source incident
on one end of the pipe (but not including the jacket) with the energy and
angular distribution given by

(8)

const.
E

S(E,u) = (1/E spectrum)

w 0 otherwise ,

where m = +]1 is the cosine of the coaxial direction at the entrance plane.
The procedure used to sample this distribution is given in the Appendix at
the end of this paper. Constraints on the source are 8.32 eV ( E < 184 keV
and 0.8 < u <1,

The tally used to cempare the various methods is the leakage
transmitted out the opposite end of the pipe (pipe only and not including
the jacket) within the direction 0.8 < L < 1.0 where U = +1 is (.2 cosine
of the coaxial direction at the exit plane. Results of other tal.les will
be reported, however. The energy cutoff in all cases is 8.32 cv.

Sodium-Pipe Problem

The sodium density used is 0.705 g/Cm3 which is approprisce for sodium
temperatures of approximately 1000°C. This problem is representative of
design features in fast breeder coclant loops and possibly in fusion
reactor coolant loops.

With only curvival-biasing and a weight=cutoff game, in two minutes of
computer time, no tallies were made. In fact, out of 33878 source
neutrons, only nine had made it around the 90° bend. No particle got
within 40 em of the pipe exit.

In this problem, the mesn free path averaged over collisions for
sodium is about 16 cm and about 2 ecm in the concrete. Therefore, plane
splitting aurfaces were pla.ed across the axis of the pipe at 20-cm
intervals. A 45° plane wa: also added where the two legs of the pipe
intersect. Radial splitting was used in this problem by adding two
concentric cylinders within the concrete jacket to be used as splitting
surfaces. The first cylindrical splitting surface was placed 2 cm inside
the concrete jacket, and the second was placed outward in the radial
direction another 2 «m.

To set the jmportances, two runs of half a minute each were made to
level the track population in the pipe between the source plane and the
tally plane. Relative to the corresponding axial importance in the
pipe, the radial importances were decreased by a factor of two for each of
the first two sleeves and then a factor of four for the outer sleeve. To
show that this elaboratr radial setup is really not necessary, another run
was made with only one radial-splitting surface in the middle of the
concrete jacket. The importances of the inner radial cells were reduced by



a factor of two and by another factor of four for the outer radial cells.
The figure of merit was 62 with the two concentric splitting surfaces and
58 with only one in the center of the jacket. The two surfaces are more
effective in killing outward-bound tracks and maximizing backscattered
tracks, but the extra cells and surfaces required more computation time.

In applying the weight window to the sodium pipe, the lower weight
bound vas derived from the set of importances used in the run with
eplittinz. The lowa2r bound was taken to be 3/11, wvhere I; ie the
importance for cell i. The factor three was chosen so that the source
wrrticles would start within the weight window. The uppe weight bound was
taken to be five times the lower weight bound based on prc.ious with the
veight window, it was used with the biasing parameter p set to 0.4 in one
" case and to 0.7 in another.

A multigroup run was made with MCMG using geometry splitting with
different axial-splitting planes and with one concentric splitting surface
midway between the inner and outer gurface of the concrete jacket.

Results of the above cases are summarized in Table 6.

Table 6. Results of Bent Sodium Pipe

Tranpmitted
Leakage Computer

Method (.8 <u <1) % Error FOM Minutes
MCNP, splitting 5.83 x 1077 4.1 62 9.6
MCNP, weight 6.38 x 10~7 6.4 54 4.6
window
MCNP, weight window, 5.70 x 10~7 5.7 67 4.6
expo. trans.(.4)
MCNP weight window, 5.93 x 10~/ 6.3 55 4.6
expo. trans.(.7)
MCMG, splitting 5.19 x 10~7 5.0 46 8.7
MCNP, splitting, 5.92 x 10”7 9.9 22 4.6

DXTRAN

DXTRAN in conjunction with geometry asplitting was tried for a couple
of runs with MCNP. The DXTRAN sphere was placed around the sodium at the
exit tally plane. A game was played with DXTRAN such that all
contributions to the DXTRAN sphere vere accepted within four mean free
pathes, and a Russian roulette game was played wi-t contributions beyond
four (a short run indicatad about 90X of the contributions were being made
within four mean free paths). In one case DXTRAN was tried with the nmetup
with axial-spli-ting surfaces every 20 cm and with two concentric-splitting



surfaces In the concrete jacket; the figure of merit dropped fiom 62 to
22. Secondly, DXTRAN was tried with a very simple setup using one
axiai-splitting surface (four-for-one) a* the 45° intersection of the
cvlinders and 4 second splitting surface (one-for-two) at the
sodiva-cencrete iaterface; 0.7 was the figure of wmerit.

Results other then the transmitted leakage may be of interest. Using
MCNP vith geometry splitting, 56.5Z of the starting weight was lost to
energy cutoff, 0.37 to escape through the curved jacket, 0.92 to capture,
ang 41.2% to backscatter from the source plane. The transmitted leakage
out of the sodium w2s 3.11 x 107 ¢ 4.3 between 37° and 90° relative to
the axls of the pipe at the exit and 5.83 x 10~/ % 4.1% between 0° and
37°, The leakage transmitted through the exit plane bounding the concrete
jacket (an annular disk excluding the sodium in the center) was 6.27 x 10-8
2 7.5% between 37° and 90° and 5.05 x 108 + 8.3% between 0° and 37°. _The
neutron dose transmitted thruugh the sodii exit plane was 1.28 x 10715 ¢
4.4% mrem per neutron, and the dose transmitted through only the concrete
at the exit plane was 6.39 x 10~17 % 8.6% mrem per neutron. The flux
transmitted through the sodium exit plane was 1.0l x 1079 £ 4.1%
neutrons/cm? and 5.02 x 10~11 ¥ 7.3% neutrons/cm? through the concete exit
plane.

Void-Pipe Problem

This problem is identicai to the sodium-pipe problem except that the
sodium i3 replaced by a void. Two surprises came from this problem:
(1) intuition led to preliminary problems with geometry splitting, and
(2) DXTRAN performed very impressively.

Trying this problec without any variance-reduction techniques, in two
minutes of computer time 31448 neutrons started but only 358 got past the
90° bend, snd 20 actually got to the exit tally plane.

The splitting surfaces were very similar to the sodium-pipe setup:
axial planes every 20 c¢m and two interior concentric cylinders (one 4 cm
into the concrete jacket from the void and the other another 4 cm into the
jacket). The final axial iaportance before the exit was 4096 where it was
2519424 with the sodium. The attenuation from the source to the exit is un
the order of 103,

Inivially the radial importances were set as with the sodium:
relative to a given axial cell in the void, the first radial cell had an
importance a factor of two less, the middle radial cell importance another
factor of two less, and the outer radial cell a factor of four less than
the middle cell. This setup led to a figure of merit of 16 which was
surprising since the attentuation 1s three orders of magnitude less than
with sodium where the figure of merit was 62.

Looking at the MCNP summary information, it was roted that each
neutron created about 7 tracks, and each neutron had about 6.6 collisions.
This says triat on the average every time a track had a collision, it was



split. This was the clue to the problem: the importance of the inner
sleeve of the concrete jacket was a factor of two less than he adjacent
void region which meant that a track entering the concrete ..om the wvoid
underwent Russian roulette with 50% gurvival. If the track backscattered
into the void, it was split two-for-one but then immediately went to the
other side of the void where Russian roulette was played again, etc.
Obviously this 1is very inefficient.

The next step was to set the importance of the inner sleeve equal 1o
the importance of the adjacent void. The middle-sieeve importance was then
reduced by a factor of two relative to the inner sleeve, and the
outer-gleeve importance was reduced by a factor of four relative to the
middle sleeve.

Playing other splitting games such as changing the thickness of the
concrete sleeves and reducing the number of radial sleeves from three to
two had relatively little effect.

The weight window by itself was used successfully in the problem; the
exponential transformation is not applicable. The bounds of the windows
were set based on experience and by experimenting with a couple of short
runs and watching the behavior of the sample variance.

MCMG was used with geometry splitting incorporating omne concentric
splitting surface in the center of the concrete jacket. Furthermore, two
scattering kernels were tried: (1) with a continuous-scattering angle and
(2) with the MORSE discrete-scattering angle.

Results of these runs are summarized in Table 7.

Table 7. Results of Bent-Voild Pipe

Tranesmitted
Leakage Computer

Method (.8 <p <1) % Error FOM Minutes
MCNP, splitting 1.08 x 10~3 5.6 33 9.6
MCNP, weight 1.10 x 1073 4.2 53 10.7
window
MCMG, splitting, 1.11 x 1073 3.7 60 12.2
cont. angle
MCMG, splitting, 1.07 x 1073 3.8 57 12.1

discrete angle

The MCNP-with-splitting figure of merit is less than the others by
about a factor of two and less than the sodium=-pipe figure of merit also by



a factor of two. The reason for both of these observations is unclear at
this point. It can be argued that the void pipe should take longer than
the sodium pipe because with the void all scores at the tally come from
time-consuming backscattering. With the sodium, a large number of tracks
can get to the tally plame without having to backscatter.

DXTRAN with MCNP was tried on this problem in four cases: (1) with
the above splitting setup that gave the 33 figure of merit, (2) with the
same geometrical setup (all the cells and surfaces set up for aplitting)
but with importances set o unity, (3) nu splitting and all internal cells
and surfaces removed that were required for the earlier splitting, and
(4) all the extra cells and surfaces still removed but split two-for-one
axially where the two legs of the geometry intersect at 45° and reduce the
importance of the adjacent concrete jacket by a factor of two relative to
the void. The impressive results are shown in Table 8. The weight window
was not used for any of these calculations, and there is a potontial for
further DXTRAN improvements by using it. All runs were for 4.6 minutes of
computer time. Russian roulette was played for all contributions to the
DXTRAN sphere beyond four mean free paths. In all cases the radius of the
outer sphere was 30 cm, and the radius of the inner sphere was 20 cm.

Table 8. DXTRAN Results

Transmitted
Leakage

Case (.8 <u <1) %2 Error FOM

1 splitting, 1.07 x 10~3 3.8 148
complex geometry

2 no splitting, 1.06 x 103 4.0 134
complex geometry

3 no splitting, 1.08 x 1073 3.3 135
simple geometry

4 mild splitting, 1.04 x 10°3 3.0 243

simple geometry

Some conclusions may be drawn from these DXTRAN calculations. The
improvement from case 2 to case 3 points out the obvious: more cells and
surfaces require wmore arithmetic by the computer; they don't come free.
Comparing case 1 and case 2 suggests that when you are already doing a
pretty good job by one other technique, an additional technique adds little
more and may even hurt (this was observed in the other problema).
Comparing cases 3 and 4 suggests that there is usually profit in adding a
little obvious help to the random walk. Cases 1 and 4 suggest that a very
complex, elaborate petup may be overkill; not only does it take a person
longer to set up and debug a complicated geometry, it takes the computer a
long time to get through it too.



Other results asscciated with this bent-void pipe include about 12 of
the starting weight lost to escape through the curved jacket, 82 lost to
backscatter, about 921 lost to energy cutoff, and C.4%Z lost to capture.

The leakage transmitted from the void at the exit plane between 37° and 90°
1s 1.65 x 10~4 + 5.7%, the leakage transmitted from the concrete at the
exit plane between 0° and 37° is 7.67 x 10~5 % 12% and 5.46 x 102 % 7.7%
between 37° and 90°., The neutron dose through the wvoid at the exit is

1.65 x 10~12 £ 5.8% mrem per neutron and 6.64 x 10-14 * 9.0% through the
concrete. The flux through the void at the exit is 1.16 x 1076 ¢ 4.7%
neutrons/cm? and 5.25 x 10”8 + 8.4% neutrons/cm? through the concret=.

CONCLUSIONS

It is virtually impossible to be able to say when to use one varlance-
reduction technique or another. One needs to have many techniques at his
disposal. Furthermore, it is also virtually impossible to be able to
preseribe how to use a particular technique. Experience in these matters
has no substitute.

Despite the above disclaimer, we will attempt some generai
conclusions.

It appears the weight-window concept has merit when used in
conjunction wich other techniques that produce a large weight dispersion.
It keeps from wasting time on low-weighted particles and keeps a tally and
its variance from being overpowered by a few large-weighted scores.
However, we at Los Alamos have not had enough experience with this tool to
put it into MCNP permanently. We know relatively little about how to set
the bounds of the window - especially if energy dependence is required.

The exponential transformation has very limited use by itself. It
should not be used alone but in conjunction with something like the weight
vindow. The performance and especially the reliability of the
transformation are sensitive to the biasing parameter which, in our
opinion, makes this technique dangerous to use except for the experienced
Monte Carlo practitioner. We sometimes refer to the exponential
transformation as the “dial-an-answer"” technique, because the result of a
calculation frequently appears to be a function of the biasing parameter.

Geometry splitting with Russian roulette is our most frequently-~used
technique. Although other schemes may buy more in particular situaticns,
geometry splitting will virtually always give good returns. Furthermore,
it is easy to understand and reliable. An important aspect that is
apparent from the calculations in this paper is that performance is fairly
insensitive within a broad range to how the splitting is implemented
(two-for-one, four-for-one, where the surfaces are located, etc.)

Furthermore, it is not just enough to look at a figure of merit and a
final sample error. You must also look at the sample mean and its error at



frequent intervals tuv make sure they have se tled down and converged on a
reliable result. In other words, look at th. variance of the variance.

For example, after a relatively few histories, a point -detector flux may
have an indicated error of 10Z but be in actual error by several factors.
After a few more histories, both the flux and its error could be perturbed
significantly. This procedure was not emphasized earlier in the paper, but
it was used. It 1is simply wise practice - because it may give the only
clue of an unreliable result.

Group X-6 is experimenting with analytically calculating the variance
of the variance (or error of the error) and most of the MCNP calculations
for this paper were done with a modification to MCNP for this purpose.11
We recognize that there is very little quantitative information iIn the
fourth moment, but qualitatively it appears that whenever the error of the
error is of the same order as the error (both about 5 or 10%, for example)
then the sample mean is reliable. But if the error 1s about 10X and the
error of the error is 60%, the mean is unreliable.

One valid rule of thumb is to always make a few short, experimental
runs to get a feel for the problem and to see the efifect for different
techniques and parameters. The code you are using should automatically
provide you with enough basic information to allow ycu to evaluate and
understand rtbe run and its attributes. It has been our observation that
the more experience a person has, the more reliance is put on preliminary
runs. The less experience a person has, the more likely a job will be set
up as quickly as possible, a long run attempted, and whatever comes out
believed.

Finally, this paper has probably generated more questions than it has
ausvered ~ especially in the avea of multigroup calculatinns. Also, as
applications become increasingly more complicated, there are other
important and interesting topics such as the effect of representing a
complex three--dimensional geometry by a lower-dimensional model. We look
forward to addressing these and other questions in the future.
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Appendix

Fission-Speccrum Groups for MCMG

The source fraction per group, SB' i8 determined from

E
S = 2 \F e E/T GE, T = 1.30 Mev
B Jar) T
£

+1
Group Lower Bound, MeV SE
1 15.0 3.0380E-5
2 13.5 7.8639E=-5
3 12.0 2.3568E-4
4 10.2 1.1626E-3
5 7.79 5.9203E-?
6 6.07 1.7678E=2
8 2.865 9.1383E-2
9 2.232 1.0877E-1
10 1.738 1.1525E-1
11 1.353 1.1097E-1
12 0.823 1.8153E-1
13 0.50 1.1963E-1
14 0,301 6.9450E-2
15 0.184 3.6918E-2
16 0.0676 2.8169E-2
17 0.0248 6.6880E-3
18 0.00912 1,5188E=-3
0.99955

- ————

Sample Energy E from Fission Spectrum

mT

T = 1,30 MeV

E = 31/2 = 1.95 MeV

Let £ be a random number (0,1),

a= (=€n ¢
E = T(-Ln

. 2 ,’E -E/T
f(l._) - = o
fir V1

o)uosz(

£y

+ a)

J

2

£]) and



3. Sample 1/E Energy Distribution, Angular Distribution, and Spatial
Distribution

Let £ be a random number (0,1),

(a) Energy: f(E) = (.10)/E 8.32 eV ¢ E < 184 keV
E = 0.184e~10¢
(b) Angular: f(u) = const. 0.8 <y <1
=0 otherwise
p = 0.8 + 0.2¢
u = +1 1is along y-axis

The direction cosines (u,v,w) = (0,1,0) must be rotated through the
polar angle cos‘Hn and through an azimuthal angle sampled uniformly from
(0,2m).

{(c) Spatial: y = 0
x2 + 22 ¢ 202 .



